

115TH CONGRESS 1ST SESSION

8

H. RES. 334

Expressing the sense of the House of Representatives regarding grid modernization.

IN THE HOUSE OF REPRESENTATIVES

May 17, 2017

Mr. McNerney (for himself and Mr. Latta) submitted the following resolution; which was referred to the Committee on Energy and Commerce, and in addition to the Committee on Science, Space, and Technology, for a period to be subsequently determined by the Speaker, in each case for consideration of such provisions as fall within the jurisdiction of the committee concerned

RESOLUTION

Expressing the sense of the House of Representatives regarding grid modernization.

1 Resolved, That it is the sense of the House of Rep2 resentatives that it should be the policy of the United
3 States to promote and advance—
4 (1) the modernization of the energy delivery in5 frastructure of the United States, and bolster the re6 liability, affordability, diversity, efficiency, security,
7 and resiliency of domestic energy supplies, through

advanced grid technologies;

1	(2) the modernization of the electric grid to en-
2	able a robust multi-directional power flow that lever-
3	ages centralized energy resources and distributed en-
4	ergy resources, enables robust retail transactions,
5	and facilitates the alignment of business and regu-
6	latory models to achieve a grid that optimizes the
7	entire electric delivery system;
8	(3) relevant research and development in ad-
9	vanced grid technologies, including—
10	(A) energy storage;
11	(B) predictive tools and requisite real-time
12	data to enable the dynamic optimization of grid
13	operations;
14	(C) power electronics, including smart in-
15	verters, that ease the challenge of intermittent
16	renewable resources and distributed generation;
17	(D) real-time data and situational aware-
18	ness tools and systems; and
19	(E) tools to increase data security, physical
20	security, and cybersecurity awareness and pro-
21	tection;
22	(4) the leadership of the United States in basic
23	and applied sciences to develop a systems approach
24	to innovation and development of cyber-secure ad-
25	vanced grid technologies, architectures, and control

1	paradigms capable of managing diverse supplies and
2	loads;
3	(5) the safeguarding of the critical energy deliv-
4	ery infrastructure of the United States and the en-
5	hanced resilience of the infrastructure to all hazards,
6	including—
7	(A) severe weather events;
8	(B) cyber and physical threats; and
9	(C) other factors that affect energy deliv-
10	ery;
11	(6) the coordination of goals, investments to op-
12	timize the grid, and other measures for energy effi-
13	ciency, advanced grid technologies, interoperability,
14	and demand response-side management resources;
15	(7) partnerships with States and the private
16	sector—
17	(A) to facilitate advanced grid capabilities
18	and strategies; and
19	(B) to provide technical assistance, tools,
20	or other related information necessary to en-
21	hance grid integration, particularly in connec-
22	tion with the development at the State and local
23	levels of strategic energy, energy surety and as-
24	surance, and emergency preparedness, response,
25	and restoration planning;

1	(8) the deployment of information and commu-
2	nications technologies at all levels of the electric sys-
3	tem;
4	(9) opportunities to provide consumers with
5	timely information and advanced control options;
6	(10) sophisticated or advanced control options
7	to integrate distributed energy resources and associ-
8	ated ancillary services;
9	(11) open-source communications, database ar-
10	chitectures, and common information model stand-
11	ards, guidelines, and protocols that enable interoper-
12	ability to maximize efficiency gains and associated
13	benefits among—
14	(A) the grid;
15	(B) energy and building management sys-
16	tems; and
17	(C) residential, commercial, and industrial
18	equipment;
19	(12) private sector investment in the energy de-
20	livery infrastructure of the United States through
21	targeted demonstration and validation of advanced
22	grid technologies; and

1	(13) establishment of common valuation meth-
2	ods and tools for cost-benefit analysis of grid inte-
3	gration paradigms.

 \bigcirc